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On a One-Dimensional Model for the 
Three-Dimensional Vorticity Equation 
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The one-dimensional model for the three-dimensional vorticity equation 
proposed by Constantin, Lax, and Majda is discussed. Some unsatisfactory 
points are examined, especially when the viscosity is introduced. A different 
model is suggested, which, while less solvable than the previous one, can be 
more strictly connected with the three-dimensional vorticity behavior. The study 
is of interest for the numerical treatment of the three-dimensional vorticity 
equation. 
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1. I N T R O D U C T I O N  

Recently Constantin et  al. (2) proposed a simple one-dimensional model for 
the three-dimensional vorticity equation for an inviscid incompressible 
fluid. The interest of the model is that, while it is simple, by its explicit 
solution many of the qualitative features that one expects for the three- 
dimensional vorticity equation are recovered. 

Subsequently Schochet (5~ added the viscosity to the model and 
obtained results, again exhibiting explicit solutions, that are in some way 
strange. 

Having in mind that a one-dimensional approximate model, if it is 
good, can be of great help in the difficult problem of the numerical integra- 
tion of the three-dimensional vorticity equation, it seems advisable to 
reconsider the previous models in order to discuss the points that are not 
completely satisfactory and try to modify them in such a way that the 
agreement with the three-dimensional vorticity equation is more evident. 
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To understand better the models and the modifications suggested, it is 
useful to state very briefly the principal properties of the three-dimensional 
vorticity equation and of the model of Constantin et al. in order to see why 
this is so simple, but at the same time to clarify the observations that force 
us to change the model and lose part of its simplicity. 

2. V O R T I C I T Y  E Q U A T I O N  

The Euler equation 

-- v + (vV)v = -Vp  + f  (1) 
c~t 

with a forcing f coming from a gradient field can be written as a vorticity 
equation 

Do) 0o) 
Dt = ~--)- + (vV)o)= (o)V)v (2) 

where 

co = rot v 

and the incompressibility condition is expressed by 

div v = 0 

(3) 

(4) 

Equation (2) has to be solved by substituting in it the solution v of the 
differential problem (3), (4). We suppose that the domain of the equation 
is the whole R 3 and that o)( _+ oc)= 0. 

As is well known, (~/the solution of the problem (3), (4) is given by the 
Biot-Savart formula 

l f v  1 v(x,t)=~ Ix_x,lXo)(x',t)dx' 
1 f x - x '  

- 4rr I x - x ' ]  s x o ) ( x ' ' t ) d x ' '  x ' x ' e R 3  (5) 

With this expression for v it is easy to see that the second member of (2) 
becomes singular and is defined only as a Cauchy principal value. 
Considering the matrix Vv decomposed in its symmetric part 

D(v) = lEVy + (Vv) r]  (6) 
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and its antisymmetric part 

J(v)  = �89  - ( v v )  ~3 (7) 

which can in a standard way be identified with the vorticity, it is easy to 
see that 

and so Eq. (2) reduces to 

J(v )co = 0 

D 
--CO=D(CO)CO, x E R  3 (8) 
Dt 

[-we preserve the notation of Constantin et al. and D(co) holds for (6) when 
(5) is substituted in it]. From (5) and (8) it follows, for symmetry reasons, 
that 

f D(co)codx=O, x e R  3 (9) 

and so 

because 

d f co(x,t)  dx=O,  x E R  3 (10) 
dt 

f (vV)co dx = 0 

Then we have the conservation of the total vorticity. Observe that in R 2 we 
would have the conservation of the vorticity for any fluid particle 

D 
- - c o = 0 ,  x E R  2 (11) 
Dt 

We suppose initially 

f co(x, O) dx = 0 (12) 

and null values at infinity: co( _+ 0% 0 ) =  0. 
Just to see if (8)-(12) are compatible with a possible explosion of co, 

we consider the equation 

060 6 ~ 092 
co -~- + (vV)co �9 co (13) 

Dt = ~t 

=0(09)092 , x E R  3 (14) 
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where we suppose clear the meaning of the quadratic form in the second 
member. Integrating (14) and considering that the boundary conditions for 
co give 

f (vV)co.codx=O, x ~ R  3 (15)  

we have the equation 

if (16) 

so, even if the vorticity stays zero in the mean, it can increase without 
bounds in absolute value. 

3. O N E - D I M E N S I O N A L  MODEL 

The ingenious idea of Constantin et al. was to write the one-dimen- 
sional analogue of Eq. (8). The singular matrix D(co) constructed by taking 
the gradient of (5) has as a unique one-dimensional counterpart the Hilbert 
transform of co, 

H(co) = -  PV _ x ,  dX', x , x '  ~ R  1 (17) 
71; - c o X  

which shows the same kind of singularity of D(co). Then, substituting D/Dt  
with ~/&, they proposed the equation 

63(.O 
c~t - H(co)co, x ~ R  1 (18)  

as a one-dimensional model for the three-dimensional vorticity equation. 
We will explain now why this equation is in effect so simple. The lucky fact 
is that H(co) can be considered as the boundary value of a harmonic func- 
tion conjugate to co. More precisely, we can consider co(x, t) harmonically 
extended in the half-plane - ~ < x < oc, 0 < y, i.e., 

co(x, t ) =  lim u(x, y, t ) =  lim 1 fo~ 
yco( x', t) 

y ~ O  y~0 2"~ _ ~  (X--  X')2 + y 2 dx'  (19) 

= lim - -  ~ l n [ ( x -  x')  2 y~02r t0  ~ + y 2 ] c o ( x , , t )  dx, (20) 
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The harmonic function conjugate to u is easily found from (20) to be 

V(x, y , t ) = ~ - ~ f _ ~  l n [ ( x - x ' ) 2 +  y Z ] c o ( x ' , t ) d x  ' (21) 

1 ~ oo x - x' 
--~ J 0o ( x - x ' ) 2 +  y2 co(x,1 t )dx'  (22) 

SO 

H(co) = lira V(x, y, t) 
y ~ 0  

The conclusion is that we can consider the function f ( z ) =  u + i V ,  
holomorphic in the half-plane y > 0 ,  solve Eq. (18) in terms of such a 
function, and then have 

co = lira Re f ( z ,  t) 
y ~ O  

Incidentally, we have also 

H(co) = lim Imf (z ,  t) 
y--cO 

Equation (18), extended in the half-plane, is 

0 
- - u = u V  (23) 

and so it is the real part of 

OJ" i (24) 
~t - 2 f 2  

where f ( z )  is the holomorphic function 

f ( z ,  t) =-i foo co(x',__t) dx', z = x + iy 
_ ~  Z - - X  I 

So Eq. (18) has been transformed into an easily solvable quadratic 
equation; the solution is 

4co0(x) 
co(x, t) = [2 - tH(coo(X))] 2 + t2coo(X) 2 (25) 
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specified by the initial condition co(x, 0)=coo(X). Defining the velocity 
v(x, t) as the primitive of co(x, t), 

S v(x, t) = co(x', t) dx'  (26) 
- - o o  

we have that the solution of the model is complete. 

Remark .  From Eq. (18) and from its explicit solution (25) it is clear 
that the variable x in fact does not take part in the equation: it is only a 
parameter that characterizes the initial condition, i.e., for any x E R  1 we 
have a solution of the quadratic ordinary differential equation (24), with 
the initial condition specified by co0(x). Everything in x depends only on 
the value of the field in x. In other words, a convective contribution is 
absent from (18) and we have no interaction between the neighboring 
vortices, apart from the initial condition of regularity of coo(X). 

From the explicit solution (25) it follows that we can have a 
breakdown of smooth solutions of the one-dimensional vorticity equation 
(18) if and only if there exists a point Xo where co0(x0)=0 and 
H(co0)(Xo) > 0, and (25) also gives the value of the explosion time T. 

The interesting result of Constantin et al. is that, if these points Xo are 
simple zeros of COo(Xo), then 

(i) l im~ ~ [ c o ( x , t ) l P d x = o o ,  1 ~<p< ov (27) 
t ~ T ~  c~ 

(ii) Iv(x , t ) lPdx<~Cp,  l ~ < p < o o  any t < T  (28) 
- - o o  

So this model has the following interesting properties similar to the 
three-dimensional vorticity equation: 

1. It has the scale invariance property, like the true vorticity equa- 
tion (8) (see later). 

2. It shows the finite explosion time that one expects in three dimen- 
sions [the condition H(coo)(Xo) > 0 could be understood as the analogue in 
three dimensions of D(co) expanding in the direction of co]. 

3. The energy is not preserved as in three dimensions, but at least it 
is bounded [(28) with p = 2]. 

Schocnet considered Eq. (18) and added the To complete the model, , ~(5) 
viscosity 

0co 
0 t  = H(co)co + vcoxx (29) 

and equally gave explicit solutions. 
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The unsatisfactory properties of this model are: 

1. Equation (29) has a nonzero stationary solution with null bound- 
ary values. 

2. The energy of the solution found by Schochet is unbounded. 
3. Its explosion time T can be shorter than the case v = 0. 

4. D I F F I C U L T I E S  OF T H E  M O D E L  

This situation induces us to discuss the model and try to understand 
why it does not work completely well and how it can be modified in order 
to restore some closer similarity with the three-dimensional flow. 

1. First of all, in (2) we have two terms from rot[ (v  .V)v]:  (v-V)co 
and (co .V)v. In Eq. (18) only the second is considered: i.e., knowing that 
we are in R ~, D/Dt  has been substituted with O/~t, as it would be for an 
incompressible fluid. Now, hoping to construct a one-dimensional repre- 
sentative for the three-dimensional vorticity, we would be ready to expect 
that the model will not be a one-dimensional incompressible fluid. In other 
words, of the two differential operators Vv and V x v, only one survives in 
R ~ and it seems more convenient to connect, as was done in the paper of 
Constantin et al., Ov/Ox with co. But if things are done in this way, we have 
to preserve also the term (v.O/Ox)co. A further reason for this is that the 
two terms (v. a/Ox)co and (co-~/ax)v are both zero in mean and have the 
same importance. To see this, observe that 

T co%a  
- - o o  c o  - - c o  

lf- 2 oo co2vx dx 

So it is more correct to preserve both of them in the one-dimensional 
model. 

2. The second point to consider is that, having written the second 
member  of (18) as H(co)co instead of co2, it was explicitly supposed that 
(O/~x)v # co, so we cannot define now 

( ,X 

v(x, t) = j _ oo co(x', t) dr '  (30) 

A further reason for not adopting the definition (30) is that the solution (5) 
of the differential problem (3), (4) depends, as expected, on the values of 
c0(x, t) on the whole space, while in (30) the values of co(x', t) for x '  > x do 
not affect the value of v in x. 
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3. The third reason to make some changes is that it has been already 
proved (3'7) also in R 3 that, for some Vo and for v ~< Vo, the solutions vv of 
the Navier-Stokes equation exist for a time Tv0 and tend uniformly to Vo, 
with Vo the solution of the Euler equation. So the solution found by 
Schochet, with the explosion of the energy for any v > 0, is not compatible 
with this theorem. 

5. M O D E L  P R O P O S E D  

For all these reasons we suggest changing the definition of v and not 
substituting D/Dt  with ~/8t. As regards the first problem, if the Hilbert 
transform H(co) stays for 8v/Sx, it is natural to define 

v ( x , t ) = l  f2_ l n l x - x ' l c o ( x ' , t )  dx' (31) 

or, equivalently, if co( + 0% t) = 0, as we suppose, 

~(x, t) = 5 PV f ~ rex', t) ~z oo x - x - - - - - ~  dx' = H(f2)(x ,  t) (32) 

where 

i 
x 

(2(x, t ) =  co(x', t) dx' 

This means that the present definition of v is in fact the Hilbert transform 
of the velocity as defined by Constantin et al. 

So v(x, t) is well defined if co(x, t) is integrable, decaying sufficiently 
well at infinity, and depends, as desired, on all the values of co. Further, 
since f2( _+ 0% t ) =  0, it follows that also v( + oo, t ) =  0. [One has 

1 
v(x, t) =-~ In ]xl - ~  co(x', t) dx' + -~ - ~  In ~ co(x', t) dx' 

and t-2(__oo, t ) = 0  is a necessary and sufficient condition to have 
v(+ oo, t)=0.] 

The one-dimensional model for the three-dimensional vorticity equa- 
tion we suggest is then 

D o  ~co 
m 

Dt 8t 
t- Vcox = cov~ - coil(CO) (33) 

where v is defined by (31) or (32). 
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Let us now examine the properties of this model. 

1. First of all, we cannot now use the reasoning used to solve (18): 
Eq. (33) is no longer the boundary value of the real part of a holomorphic 
equation; even if co and v~ (u and V in the previous notations) are 
harmonic, the product vco x is not harmonic. 

2. The solution of (33) still satisfies the conservation law 

d oo 
~ f ~  co(x, t ) d x = 0  

while 

dtd'~176 2 53f ~ j co (x, t) dx = co2H(co) dx  (34) 
oO 

Observe that in the first member of (34) there is a contribution from the 
compressibility of the fluid. More precisely, while in R 2 and R 3 

f (v .  V)co .co dx  

is zero for the div v = 0 condition, now we have 

- 2 f  co co2H(co) dx 

Considering a fixed interval (x j, x2), we have 

d U21 2 3 _ r x 2  
- -  J - co dx  co2H(co) dx  
dt xl 2 - 2 Jx~ 

and so we have that an increase or decrease of co is due also to a convective 
contribution [see Remark following Eq. (26)]. 

3. Equation (33) with (32) satisfies the scale invariance property: if 
co(x, t) is a solution of (33), then 

coax, t) = ~1 + ~co(;~x, ;~1 + % 

satisfies the same equation with 

v~.(x, t) = 2v( ;~x ,  ,~ + % 

4. Introducing as an unknown function the inverse of co, 

r = 1/co 
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we see that Eq. (33) assumes a very simple and interesting form, 

& a 
?7 + ~ (~ )  = 0 (35) 

i.e., it is a conservation law for r in a compressible fluid. The decrease of 
(and so the increase of co) in the interval (xl, x2) is connected to the 

quantity of r escaping from the extremes of the interval (xl, x j .  The con- 
servation law says, for example, as we will see better in the following 
properties, that if ~ is in mean bounded and different from zero initially, it 
cannot become zero (and so co become oo) if I~x(t)/~x(O)l <~ M <  0% where 
x( t )  is the solution of the differential equation 

2 = v ( x ,  t) (36) 

with v defined by (32). 
Obviously, (36) cannot be solved without having solved (32), (33). 
Considering so the Lagrangian form of the equations, and denoting by 

~btx the solution of (36) that at t = 0 starts from x, i.e., 

r  = x(t,  x, 0) where x(0, x, 0) = x 

we have the following property. 

5. In Lagrangian coordinates the formal solution of Eq. (33) looks 
like the formal solution of the vorticity equation in R 3. One has (see, for 
example, ref. 6) 

co(~tx, t) coo(X) a~,x 
p ( r  t)  - po (X)  a x  ' 

x ~ R  3 (37) 

and, for p = const, 

# ~ x  
co(r t) = coo(X) 7x  ' x ~ R  3 (38) 

Now we have 

0r 
co(~b,x, t) = coo(X) ax (39) 

but (39) is valid for a one-dimensional compressible fluid: the incom- 
pressibility condition would give 

co((btx, t) = co0(x ) (40) 
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Romark. The stretching in R 3 (for p = c o n s t )  is connected to the 
eigenvalues of OOtx/Ox; the stretching in R 1 instead is connected to the con- 
dition p ~ const. In R 3 we can have the Jacobian determinant equal to 1 
and nevertheless eigenvalues of the matrix O0,x/~x greater than 1 in some 
direction (and less than 1 in other directions); in R 1, on the contrary, the 
matrix and the determinant coincide, so we cannot simulate in R 1 at the 
same time the behavior of the three-dimensional vorticity in all directions. 

We also give in explicit form a property already contained in the 
preceding 

6. The explosion of co is possible if and only if ~Otx/#x is unbounded. 
And noting that ~?(~tx/Ox is unbounded if and only if Ov/~?x is unbounded, 
we recover a result true for the three-dimensional flow. (4) 

We note also that 

d f v z d x =  d dt _~ f ~72 dx (41) 

This is obtained by substituting (32) in the left member of (41) and 
recalling that 

dx 
(x - ~z26(x' - x") (42) 

X')(X X") 

when we consider functions for which the Hilbert transform is defined. 
Let us now comment  some more on (25) and on the periodic example 

considered by Constantin et al. If coo(X) = cos x, then H(coo)(X) = sin x and 
(25) becomes 

cos x 
= ( 4 3 )  co(x, 2t) l + t  2 - 2 t s i n x  

So the point x--~z/2 satisfies the request that there be an explosion for co: 
the explosion time T is now T =  2. But in x = ~/2 the solution is always 
zero: it is in the neighborhood of this point that the solution develops 
a nonintegrable singularity. This example can then appear artificial and 
connected in some way with the pathology of trigonometric series. This 
behavior seems analogous to that of the series 

~ sin nx 
n=z Inn  

in x = 0: the series converges in any point, but around x = 0 the sum of the 
series goes like 1Ix. 
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In contrast with (43), the velocity v has in x = ~ / 2  an integrable 
singularity. 

If we look now for a stationary solution of Eq. (33), we will have a 
slightly surprising result. The stationary solution satisfies the equations 

v v 

3x co 0, -co = cons t  (44) 

i.e., 

- d x '  = c c o ( x )  
7~ - - o o  

(45) 

o r  

There is no problem of additive constants, for we have 
co( -t- oo ) = (2( + oo ) = 0. The unique solutions of these equations are, as is 
easy to verify, the trigonometric functions. In this case the condition 

f o o  co dx = 0 
oo  

reads 

f ~ co dx = 0 
- - T t  

So the exploding solution found by Constantin et al. becomes a 
stationary solution of the present model (the convective term forbids the 
explosion of co). 

The difficulties posed by the work of Schochet also can now be solved 
very easily. He started from a stationary solution of (29), and from that 
constructed a nonstationary solution. But that stationary solution does not 
exist for v = 0, and so it is not surprising that the solution he found for 
Eq. (29) does not satisfy the theorem of uniform convergence to the solu- 
tions of (18), as we would expect if the model were a good model for the 
three-dimensional vorticity. 

If we consider the Navier-Stokes analogue of our model, we have 

Oco 
--~f + Vcox = H(CO)CO + vco~x (47) 
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and this equation, as we would expect, has no stationary solution different 
from zero for v > 0 and e)( + o e ) =  O. So the previous difficulty has been 
overcome and this is a further support for the present model. 

Further properties of the model and applications to the numerical 
integration of the three-dimensional vorticity equation will be considered in 
a further paper. 
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